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 A B S T R A C T     

 

Background: Lumbar Hyperlordosis (LH) is associated with lumbar muscle defects or altered 

muscle engagement patterns, leading to low back pain. However, the specific muscle most influential 

in causing this condition remains unclear. This study aims  to determine effective prescient 

alternative to Lumbar Hyperlordosis (LH) from muscular activity variables in stance phase of 

walking, in addition to discovering homogenous clusters of individuals based on the primary 

predictive alternative. 

Methods: The activity of Rectus Femoris (RF), Gluteus Medius (GM), and Lumbar Erector Spinae 

(LES) was recorded in 40 females suffering from LH while walking. Maximum activity and 

muscular involvement for each muscle were extracted. A multilayer perceptron artificial neural 

network  was used to detect notable projected variables of LH. K-means clustering was then 

employed to identify homogeneous clusters of individuals based on the most significant predictive 

variable. The One-Way ANOVA test used to identify homogenous clusters. 

Results: The results demonstrated that RF maximum activity with an accuracy of 90.9%, was 

detected as the most prominent predictive variable. The One-Way ANOVA test demonstrated 

significant differences among the three homogeneous clusters of individuals based on Rectus 

Femoris maximum activity (P≤0.05). Conclusions: The classification scheme presented in this paper 

can describe muscle activity patterns while walking and may be useful for screening individuals 

suffering from Lumbar Hyperlordosis and for clinical decision-making based on clusters. The 

maximum activity of the Rectus Femoris is the most important factor affecting lumbar hyperlordosis, 

which is relevant in rehabilitation and health fields. 
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Introduction 

Lumbar hyperlordosis (LH), characterized by increased lumbar curvature, results from anterior 

pelvic tilt and hip flexion[1]. This condition is a leading cause of low back pain globally, 

particularly affecting women[2], and  impacts daily activities such as walking [3], leading to 

chronic low back pain during walking and standing [4]. LH is associated with Pelvic Crossed 

Syndrome where the erector spinae muscles and hip flexors become tight while gluteal muscles 

weaken[5]. This muscular imbalance disrupts the lumbopelvic rhythm and impairs pelvic 

function[6]. The stability of the lumbo-pelvic belt is compromised without the proper functioning of 

the pelvic supporting muscles[7]. 

The association between LH and shortness of rectus femoris, lumbar erector spinae[2, 8] and 

decreased activity of the gluteus medius was showen during walking, single leg squat and landing 

[6].  

Recent studies suggest that individuals exhibiting with similar muscle activity patterns may respond 

similarly to therapeutic interventions. Machine learning(ML) techniques particularly artificial 

neural networks (ANN), have been effectively employed to predict gait events and identify 

significant predictive variables related to spinal abnormalities and low back pain[9,14]. 

Saranya et al. have highlighted the suitability of lumbar erector spinae muscles for predicting 

chronic low back pain[10]. Additionally, Piatkowska et al. reported the thigh and leg muscles are 

appropriate for clustering diabetic patients during walking and climbing the stairs [11]. ML and 

deep learning have also proven effective in interpreting surface electromyography (sEMG) signals 

for various applications, including gesture classification and muscle fatigue detection, Different 

models were adopted: convolutional and recurrent neural networks for muscle force estimation and 

multi-layer perceptron to classify neuromuscular disorders, applied to the sEMG signal for 

classification purposes and for the detection of physiological patterns and parameters[12]. And also 

according to the background of studies Clustering methods has also used for detect agonist and 

antagonist muscles activity patterns of leg during gate based on hierarchical and k-means 

techniques in healthy people[13, 14]. Despite the advances in ML applications, there is limited 

research on the evaluation of posture parameters and abnormalities like hyperlordosis and 

hyperkyphosis[12]. This raises the question of whether muscle activity patterns during walking can 

effectively predict and cluster individuals with lumbar hyperlordosis. Hence, a machine learning 

approach tested in this study to assess activity of  three muscles with different role and placement 

areas (rectus femoris in the anterior part of body as a hip flexor, lumbar erector spinae in the 

posterior area as a trunk extensor and gluteus medius in the external side as a supportive muscle) to 

find which of them predict LH better in walking[6, 15] because it has been stated that the most 

effective variable in generating homogeneous clusters may be helpful in developing specific 

prescriptions for patients[16]. According to our knowledge Probably machine learning methods are 

helpful in finding homogeneous clusters of patients with lumbar hyperlordosis with similar patterns 

of muscle activity in the support phase of gait. Therefore, the first objective of the present study is 

to find the most important variables in predicting lumbar hyperlordosis using variables with 

maximum activity and the novelty of this work is in the use of multilayer perceptron (MLP) to a 

spinal dataset to obtain high accuracy in spinal abnormality detection. The second objective is to 

find homogeneous clusters based on muscle activity patterns using K-means clustering. Identifying 

the most effective variables for generating homogeneous clusters could aid in developing specific 

prescriptions for patients. 

 

 

 



Material and Methods 

Participants 

The study population consisted of female students aged 20 to 35 years with HL of Shahid Beheshti 

University. Forty participants as available according to the background of studies[17] (age: 27±3.87 

years, height: 160±5.48 cm, mass: 63±10.91 kg, bmi: 25±3.94 kg/m2, lumbar lordosis 49±12.74 

degrees) voluntarily participated. The inclusion criteria included no history of spinal surgery, 

absence of spinal and lower extremity structural abnormalities, no back pain, non-pregnancy, no 

childbirth in the last six months, and a BMI of 23-28 kg/m2. And Non-cooperation until the end of 

the implementation of the protocol was considered as an exclusion criteria. This study was 

conducted in the Laboratory of Sports sciences and Wellbeing at Shahid Beheshti University, 

adhering to the ethics code IR.SBU.REC.1400.230. Researchers evaluated spinal cord abnormalities 

in participants using a checkered board alongside a demographics questionnaire. Participants with 

lumbar hyperlordosis exceeding the normal range of 30 degrees were selected for the study[4]. 

Comprehensive information regarding the research process was provided to all participants to 

ensure informed consent and understanding of the study's objectives. 

 

Instruments 

The lumbar angle was measured using a flexible ruler based on the Youdas method[2]. For the 

lumbar curvature test, participants were positioned in a natural upright barefoot position. The T12 

and S2 Vertebrae were marked. The flexible ruler was placed on the skin while applying 

appropriate pressure. The distance between the two marked points was then  plotted on paper 

without any alterations[18]. The lordosis angle (θ) was calculated using the following formula: [19]: 

 

Equation 1: θ = 4[Arctan
 2𝐻

𝐿
] 

 

Where θ is the lordosis angle, and L and H represent the length and height of the curve, 

respectively. 

 

To record EMG activity of the Rectus Femoris (RF) and Lumbar Erector Spinae (LES) (with 

agonist and antagonist role in stability of lumbopelvic region) and Gluteus Medius (GM) (hip 

abductor and stablilizer of pelvis during walking)[5, 15], the dominant leg was chosen for matching 

subjects because for starting nature tasks like walking most subjects will use the dominant leg[20].  

A 16-channel ME6000 system was utilized with a 16-bit A/D converter and a sampling frequency 

of 1000 Hz (Mega Electronics, Finland). Bipolar electrodes containing conductive gel and adhesive 

were attached to the skin with a center-to-center distance of 2 cm between electrodes. A foot 

scanner was employed to synchronously identify the time interval between heel strikes and toe lifts, 

accurately detecting stance phase events during walking. 

  

Data collection  

After skin preparation with shaving and using alcohol, surface electrodes were placed on desired 

muscles following SENIAM recommendations[21]. Each participant's maximum voluntary 

isometric activity was recorded prior to walking trials. Participants walked along a 12-meter 

walkway at their preferred speed, and data from the seventh stride was analyzed[22]. Walking speed 

was calculated by dividing the walking distance by the walking time[23]. Trials were considered 

valid for analysis starting from the third stride onward. The recorded data from the stance phase of 

the seventh step is illustrated in Figure 1. 
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Figure 1. Recorded data of the support phase of the seventh step 

 

Preprocessing  

A band-pass filter was applied with cutoff frequencies of 10 to 480 Hz to eliminate noise from the 

raw EMG data in MATLAB software (version a2014). The linear envelope process was applied by 

a full rectification and a 20 Hz low pass filter to smooth the rectified signal[24]. The 

electromyographic activity of the muscles was normalized based on the maximum value obtained 

from the Maximum Voluntary Isometric Contraction (MVIC) test. 

The muscle co-contraction variable was calculated using the Equation 2[25]. 

 

Equation 2: co-contraction = 2× (
𝐶𝑜𝑚𝑚𝑜𝑛 𝐴𝑟𝑒𝑎 𝐴 & 𝐵

𝐴𝑟𝑒𝑎 𝐴+𝐴𝑟𝑒𝑎 𝐵
) × 100 

 

Area A was defined as the area under the EMG curve of muscle A, and area B as the area under the 

curve of muscle B in Figure 3. Also the common area A&B was defined as the overlapping area 

between muscle A and muscle B on the mean EMG curve. 

 

Statistical analysis 

The muscle co-contraction and maximum activity variables were analyzed using SPSS software 

(version 22). The most important predictor of lumbar hyperlordosis was identified using a 

Multilayer-Perceptron Neural Network[26]. This method as an ANN applies a unit (neuron) whose 

output is a nonlinear differentiable function of its input[27]. MLP employs the supervised learning 

Backpropagation (BP) algorithm for network training and the gradient descent weight update rule 

for computing new weights during the learning process[28, 30].  

In this work, the MLP comprised of three layers. The input layer in  MLP artificial neural network 

can be mathematically described as follows[29]: 

 

Equation 3:   Input layer: jo = P       units, a0;1,…,a0:jo;with 

                                                                                  a0:jo= xj, 
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where j is the number of neurons in the layer and X is the input. 

The neural network was trained to differentiate between the two classes of lordosis angles based on 

the input variables (muscle co-contraction and maximum muscle activity). This classification aimed 

to identify patterns and predictors associated with varying degrees of lumbar hyperlordosis (class 1 

= 30 to 40 degrees and class 2 = greater than 40 degrees). To avoid overfitting, 72.5% (29 people) 

of the participants were used for training, and 27.5% (11 people) were used to test the neural 

network. The data was validated five times to achieve the best network type with the minimum 

errors[31]. The generated neural network is presented in Figure 2. 

  

  

 

 

 

  

 

 

 

 

 
Figure 2. The three-layered neural network based on the co-contraction and maximum activity of Rectus 

femoris, Gluteus medius, Lumbar Erector-spinae. 

 

The clustering of people was done according to the most important predictor using the K-means 

clustering method. The algorithm’s goal in this clustering method is to reduce the sum of the 

squared error over all k clusters. The objective function to minimize is[28]: 

 

                           Equation 3:  𝐽 = ∑ 𝑘 ∑ 𝑛  𝑖=1𝑗=1 ‖x𝑖
(𝑖)

− cj2‖, 

Where: i = 1, …, n;  ,  n is the data points to be clustered into k clusters and C = {cj, j = 1, …, K}  

 is the cluster center. 

 To identify the most appropriate number of clusters, 2 to 5 clusters were formed[32]. Convergence 

achieved due to or no small change in cluster centers. The maximum absolute coordinate change for 

any center is 0.000. Shapiro-wilk test was used for normality and a one-way ANOVA test to 

investigate the intergroup variance[33]. 

 

Results 

 

The muscle co-contraction variable for each three muscles was visually presented in Figure3. The 

results of the artificial neural network indicated that the maximum activity of the Rectus Femoris 

was the most effective predictor of LH. K-means clustering revealed three homogeneous clusters of 

individuals based on muscle activity patterns. 
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Figure3. Evaluation of muscles' co-contraction. a) co-contraction of lumbar erector spinae and rectus femoris. b) co-

contrction of rectus femoris and gluteus medius. c) co-contrction of lumbar erector spinae and gluteus medius. 

 

Results of the artificial neural network 

The results of training five different neural networks were analyzed to determine the highest 

prediction accuracy and the lowest errors, as presented in Table 1 below. 

 
Table 1. Accuracy and error percentage of the prediction of the neural networks 

The most 

important 

predictive 

variable 

Clustering 

accuracy 

percentage in 

the test group 

Clustering 

accuracy 

percentage in 

the training 

group 

Error 

percentage in 

the test group 

Error 

percentage in 

the training 

group 

Neural network 

Rectus femoris 

and lumbar 

erector spinae 

co-contraction 

56.3 79.2 43.8 20.8 First 

Rectus femoris 

maximum 

activity 

90.9 89.7 9.1 10.3 Second 

Gluteus medius 

and lumbar 

erector spinae 

co-contraction 

69.2 74.1 30.8 25.9 Third 

Gluteus medius 

and lumbar 

erector spinae 

80 60 20 40 Fourth 



co-contraction 

Gluteus medius 

and lumbar 

erector spinae 

co-contraction 

69.2 77.8 30.8 22.2 Fifth 

 

As presented in Table 1, the second network achieved a prediction accuracy of 90.9% in the test 

group clustering, making it the best fit network for this analysis. The results from this network were 

utilized for the clustering process. 

Figure 4 illustrates the effectiveness percentage of each predictor variable related to lumbar 

hyperlordosis in the second neural network. The analysis indicates that The maximum activity of 

the rectus femoris is the most effective variable in predicting lumbar hyperlordosis, Other muscle 

activity variables show lower effectiveness percentages, indicating that they are less significant in 

the predictive model for lumbar hyperlordosis. 

 

 

  Figure 4. The effectiveness percentage of muscle activity variable 

 

Results of K-means 

According to Figure 4, the maximum activity of the rectus femoris is identified as the most crucial variable 

for predicting lumbar hyperlordosis. It appears that the maximum activity of the rectus femoris tends to 

predict lumbar hyperlordosis more effectively than other muscle activity variables. In the present study, 

participants were clustered according to their muscle activity patterns, specifically focusing on the 

maximum activity of the rectus femoris. 

To determine the best clustering type for the study, the results of the one-way ANOVA revealed a 

significant difference between all groups within the clusters only with 3 clusters (P≤0.05). Table2 presents 

the results of this test. Furthermore, when considering three clusters, the convergence between the data and 

the cluster center is achieved faster and completed with two clustering repetitions. At the same time, the 

number of repetitions reached 6, considering the other number of clusters. Table 3 presents the converging 

results. 
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Table2. ANOVA result for 3 clusters 

 Cluster  Error  F Sig. 

 Mean 

Square 

df Mean Square df   

Maximum of 

Rectus femoris 

2.549 2 .017 37 150.750 .000 

 

Table 3. History of layer-building repetitions 

Repetition Mean change of the difference between data and center of the clusters 

1 2 3 

1 0.079 0.073 0.185 

2 0.000 0.000 0.000 

 

Clustering participants of the present study into three clusters resulted in clusters of 30, 8, and 2 

participants, which are presented based on the angle of lumbar hyperlordosis and maximum activity of the 

rectus femoris with greatest importance in predicting LH in Figures 5 and 6, respectively. As shown in this 

table, 8 participants are in the first cluster, 2 in the second cluster, and 30 in the third cluster. 

 

 

Figure 5. Clusters based on the lumbar lordosis angle 
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Figure 6. Clusters based on rectus femoris maximum activity 

 

Participants in the second cluster exhibit similar levels of lordosis angle as those in the other clusters; 

however, they are categorized separately due to a significantly increased maximum activity of the rectus 

femoris. Additionally, participants in the first cluster demonstrate higher maximum activity of the rectus 

femoris compared to those in the third cluster. 

Discussion 

The present study aimed to identifying the most effective muscle predicting lumbar hyperlordosis 

during walking with testing the ability of Multilayer-Perceptron neural networks. Additionally, 

lumbar hyperlordosis was clustered using a machine learning algorithm based on the most effective 

muscle activity variable. These algorithms discover hidden patterns in data without the need for 

human intervention[18]. In this study, five independent Multilayer-Perceptron neural networks were 

created and compared; the second model exhibited a lower error rate (9.1%) compared with the 

others (with the prediction accuracy of 90.9%) and was deemed the best network. Most studies 

consider neural networks with an accuracy of 90% or higher to be suitable. Machine learning 

approaches collect information from entire time series steps, as opposed to peak or average picking 

methods[34]. It is believed that considering a limited number of variables may not lead to 

appropriate clustering or may result in very small clusters, illustrating the complexity and diversity 

of muscle activity variables[11]. Hence, for more accurate clustering, an artificial neural network 

was tested in this study to determine which pattern of muscle activity affects lumbar hyperlordosis 

and can be predicted using artificial neural networks (ANNs). We extended those findings here 

demonstrate that the predictive capabilities of ANNs are retained during walking, allowing for the 

identification of the most important features of EMG patterns related to lumbar hyperlordosis and 

the development of an accurate model for predicting LH. In the next step, k-means clustering was 

applied based on the most effective feaure to find homogeneous groups of individuals with LH, 

facilitating the provision of specific modalities. The results of clustering based on key predictor 

variables obtained from the neural network revealed three homogeneous groups of individuals. 

Recently, the predictive use of neural networks has gained popularity in gait research, being utilized 

to predict spinal abnormalities[35], in addition to studying electrical muscle activity during the gait 

phase [17, 36, 37]. A study by Kristen Morbidoni et al. predicted foot contact signals from 

electromyographic signals of leg and thigh muscles, achieving an accuracy of 94.9% using multi-
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layer perceptron neural networks[36]. Another study proposed an artificial neural network to predict 

gait phases with an accuracy of 87.5% using five time-dependent muscle activity variables[37]. 

Zahid Rao et al.  demonstrated  the use of EMG for predicting outcomes in individuals with 

impaired trunk control, achieving an accuracy of 95.44%[38] supporting our assertion regarding the 

suitability of machine learning for predicting alignment disorders. Gundala Jhansi Rani et al. 

employed machine learning technique to detect knee abnormalities based on EMG signals, 

achieving good accuracy and indicating that predicting abnormalities based on muscle activity is 

suitable[39] aligning with our results regarding the effectiveness of ML techniques based on EMG. 

In addition to presenting our ANN model for prediciting LH based on muscle patterns, we found 

that the maximum activity of the Rectus Femoris is the most effective feature for predicting LH. 

This emphasizes the relationship between the Rectus Femoris as a hip flexor and lumbar 

hyperlordosis during daily activites, which is crucial for rehabilitation[40-42].       

Examining the results of K-means clustering according to the maximum activity of Rectus Femoris, 

a one-way ANOVA test showed significant differences between clusters. Notably, the lordosis 

angle of one cluster was similar to that of the other groups, although they differed regarding the 

maximum activity of the Rectus Femoris during the stance phase of gait. The study by Izadi Farhadi 

et al.'s indicated increased activity of the Rectus Femoris and Gluteus Maximus in individuals with 

lumbar hyperlordosis compared to healthy individuals[6], which is consistent with our findings. A 

study by Ruixin Liang et al. (2022) tested paraspinal muscle activity patterns in patients with 

scoliosis and identified  homogeneous clusters of individuals[43]. Using K-NN and K-Means 

methods to cluster the activity patterns of six basic hand gestures, Erhan-Bargil et al. reported 

higher accuracy for the second method[44]. Clustering of muscle activity patterns in patients with 

hemophilia, cerebral palsy, and diabetes revealed homogenous clusters of patients[22, 32, 45]. 

Utilizing muscle activity features likely provides a framework for classifying individuals during 

walking. 

The three clusters of individuals with lumbar hyperlordosis differentiate themselves by more than 

just lordosis angles, highlighting the importance of muscle activity for clustering. This new 

classification scheme can effectively describe muscle activity patterns while walking. Furthermore, 

the findings of this study align with research that identified the Rectus Femoris as a suitable muscle 

for clustering patients with low back pain , indicative of LH[45] and may assist in clinical decision-

making differentiation of patients with lumbar hyperlordosis[46]. Overall, the results of the machine 

learning model developed in this study suggest that our model  is sutiable for predicting individuals 

with LH based on EMG signals, facilitating their clustering and providing valuable insights for 

clinical applications. 

 

Conclusion 

This study provides valuable insights into the application of machine learning techniques for 

analyzing EMG patterns in women with lumbar hyperlordosis (LH), potentially informing the 

development of more efective treatments. The results indicate that our machine learning (ML) 

model is suitable for predicting lumbar hyperlordosis abnormalities based on muscle activity. This 

allows therapists to anticipate LH abnormalities in individuals based on muscle patterns. Notably, 

the maximum activity of the Rectus Femoris was identified as the most significant factor affecting 

LH. This finding suggests that clustering patients with hyperlordosis based on muscle activity, 

rather than solely relying on LH angles, may yield more relevant insights in rehabilitation and 

health fields, facilitating the identification of homogeneous groups. Considering the associated 



variables to muscle activity and the impact of participant numbers on the efficacy of the employed 

approach, it is recommended that future studies take these factors into account. We advocate for the 

adoption of machine learning as an essential tool for predicting abnormalities, which may enhance 

clinical decision-making and improve patient outcomes. 
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  چکیده

 یدر فاز اتکا یعضلان یتفعال یرهایاز متغ یکمر یپرلوردوزکننده ها بینیشیفاکتور پ ترینمؤثر یینمطالعه حاضر تعمقصود از  هدف:
 کننده مدنظر قرار گرفت.  بینییشهمگن از افراد براساس فاکتور پ هایخوشه یافتن ،راه رفتن بود. بعلاوه

پرلوردوز یخانم مبتلا به ها ۰۱در  یکمر ینو ارکتوراسپا یانیم یینسر رانی،عضلات راست یتفعالدر این مطالعه  روش شناسی:
کننده  بینییشپ یرهایمتغ یینتع ی. براگردیدهمه عضلات استخراج  انقباضیو هم یتراه رفتن ثبت شد. حداکثر فعال ینح یکمر

با استفاده از  بینیشفاکتور پ ترینبراساس مهم یدبنخوشه استفاده شد. سپس، یهپرسپترون چندلا یشبکه عصبی، از کمر یپرلوردوزها
جهت  یهسو یکانجام گرفت. از آنووا  یکمر یپرلوردوزهامبتلا ب همگن از افراد  هایخوشه یافتن یبرا  K-meansیخوشه بند

 همگن استفاده شد. هایخوشه یافتن

 یهسو یکآنووا  همچنیندرنظر گرفته شد.  بینیشفاکتور پ ترینمهم عنوان به 9۱09٪ با دقت رانیعضله راست یتحداکثر فعال نتایج:
 (.P≤0.05را نشان داد) رانیعضله راست یتاز افراد براساس حداکثر فعال نسه خوشه همگ ینتفاوت معنادار ب

 همچنین رود؛ کارراه رفتن به ینح یعضلان یتفعال یالگوها یفتوص یبرا تواندیمقاله م ینارائه شده در ا یخوشه بند نتیجه گیری:
 رانیراست یتباشد. بعلاوه حداکثر فعال یدمف ینیبال یریگ یمو تصم یکمر یپرلوردوزافراد مبتلا به ها یغربالگر یبراتواند این نتایج می

 .یردو سلامت مورد توجه قرار گ یتوانبخش ینهدر زم تواندیمقاله م یندر ا یکمریپرلوردوزعامل مؤثر بر ها ترینمهم عنوانبه
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