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ABSTRACT

Background: Lumbar Hyperlordosis (LH) is associated with lumbar muscle defects or altered
muscle engagement patterns, leading to low back pain. However, the specific muscle most influential
in causing this condition remains unclear. This study aims to determine effective prescient
alternative to Lumbar Hyperlordosis (LH) from muscular activity variables in stance phase of
walking, in addition to discovering homogenous clusters of individuals based on the primary
predictive alternative.

Methods: The activity of Rectus Femoris (RF), Gluteus Medius (GM), and Lumbar Erector Spinae
(LES) was recorded in 40 females suffering from LH while walking. Maximum activity and
muscular involvement for each muscle were extracted. A multilayer perceptron artificial neural
network was used to detect notable projected variables of LH. K-means clustering was then
employed to identify homogeneous clusters of individuals based on the most significant predictive
variable. The One-Way ANOVA test used to identify homogenous clusters.

Results: The results demonstrated that RF maximum activity with an accuracy of 90.9%, was
detected as the most prominent predictive variable. The One-Way ANOVA test demonstrated
significant differences among the three homogeneous clusters of individuals based on Rectus
Femoris maximum activity (P<0.05). Conclusions: The classification scheme presented in this paper
can describe muscle activity patterns while walking and may be useful for screening individuals
suffering from Lumbar Hyperlordosis and for clinical decision-making based on clusters. The
maximum activity of the Rectus Femoris is the most important factor affecting lumbar hyperlordosis,
which is relevant in rehabilitation and health fields.
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Introduction

Lumbar hyperlordosis (LH), characterized by increased lumbar curvature, results from anterior
pelvic tilt and hip flexion[1]. This condition is a leading cause of low back pain globally,
particularly affecting women[2], and impacts daily activities such as walking [3], leading to
chronic low back pain during walking and standing [4]. LH is associated with Pelvic Crossed
Syndrome where the erector spinae muscles and hip flexors become tight while gluteal muscles
weaken[5]. This muscular imbalance disrupts the lumbopelvic rhythm and impairs pelvic
function[6]. The stability of the lumbo-pelvic belt is compromised without the proper functioning of
the pelvic supporting muscles[7].

The association between LH and shortness of rectus femoris, lumbar erector spinae[2, 8] and
decreased activity of the gluteus medius was showen during walking, single leg squat and landing

[6].

Recent studies suggest that individuals exhibiting with similar muscle activity patterns may respond
similarly to therapeutic interventions. Machine learning(ML) techniques particularly artificial
neural networks (ANN), have been effectively employed to predict gait events and identify
significant predictive variables related to spinal abnormalities and low back pain[9,14].

Saranya et al. have highlighted the suitability of lumbar erector spinae muscles for predicting
chronic low back pain[10]. Additionally, Piatkowska et al. reported the thigh and leg muscles are
appropriate for clustering diabetic patients during walking and climbing the stairs [11]. ML and
deep learning have also proven effective in interpreting surface electromyography (SEMG) signals
for various applications, including gesture classification and muscle fatigue detection, Different
models were adopted: convolutional and recurrent neural networks for muscle force estimation and
multi-layer perceptron to classify neuromuscular disorders, applied to the SEMG signal for
classification purposes and for the detection of physiological patterns and parameters[12]. And also
according to the background of studies Clustering methods has also used for detect agonist and
antagonist muscles activity patterns of leg during gate based on hierarchical and k-means
techniques in healthy people[13, 14]. Despite the advances in ML applications, there is limited
research on the evaluation of posture parameters and abnormalities like hyperlordosis and
hyperkyphosis[12]. This raises the question of whether muscle activity patterns during walking can
effectively predict and cluster individuals with lumbar hyperlordosis. Hence, a machine learning
approach tested in this study to assess activity of three muscles with different role and placement
areas (rectus femoris in the anterior part of body as a hip flexor, lumbar erector spinae in the
posterior area as a trunk extensor and gluteus medius in the external side as a supportive muscle) to
find which of them predict LH better in walking[6, 15] because it has been stated that the most
effective variable in generating homogeneous clusters may be helpful in developing specific
prescriptions for patients[16]. According to our knowledge Probably machine learning methods are
helpful in finding homogeneous clusters of patients with lumbar hyperlordosis with similar patterns
of muscle activity in the support phase of gait. Therefore, the first objective of the present study is
to find the most important variables in predicting lumbar hyperlordosis using variables with
maximum activity and the novelty of this work is in the use of multilayer perceptron (MLP) to a
spinal dataset to obtain high accuracy in spinal abnormality detection. The second objective is to
find homogeneous clusters based on muscle activity patterns using K-means clustering. Identifying
the most effective variables for generating homogeneous clusters could aid in developing specific
prescriptions for patients.



Material and Methods

Participants

The study population consisted of female students aged 20 to 35 years with HL of Shahid Beheshti
University. Forty participants as available according to the background of studies[17] (age: 27+3.87
years, height: 160+5.48 cm, mass: 63+10.91 kg, bmi: 25+3.94 kg/m?, lumbar lordosis 49+12.74
degrees) voluntarily participated. The inclusion criteria included no history of spinal surgery,
absence of spinal and lower extremity structural abnormalities, no back pain, non-pregnancy, no
childbirth in the last six months, and a BMI of 23-28 kg/m?2. And Non-cooperation until the end of
the implementation of the protocol was considered as an exclusion criteria. This study was
conducted in the Laboratory of Sports sciences and Wellbeing at Shahid Beheshti University,
adhering to the ethics code IR.SBU.REC.1400.230. Researchers evaluated spinal cord abnormalities
in participants using a checkered board alongside a demographics questionnaire. Participants with
lumbar hyperlordosis exceeding the normal range of 30 degrees were selected for the study[4].
Comprehensive information regarding the research process was provided to all participants to
ensure informed consent and understanding of the study's objectives.

Instruments

The lumbar angle was measured using a flexible ruler based on the Youdas method[2]. For the
lumbar curvature test, participants were positioned in a natural upright barefoot position. The T12
and S2 Vertebrae were marked. The flexible ruler was placed on the skin while applying
appropriate pressure. The distance between the two marked points was then plotted on paper
without any alterations[18]. The lordosis angle (0) was calculated using the following formula: [19]:

Equation 1: 6 = 4[Arctan%]

Where 0 is the lordosis angle, and L and H represent the length and height of the curve,
respectively.

To record EMG activity of the Rectus Femoris (RF) and Lumbar Erector Spinae (LES) (with
agonist and antagonist role in stability of lumbopelvic region) and Gluteus Medius (GM) (hip
abductor and stablilizer of pelvis during walking)[5, 15], the dominant leg was chosen for matching
subjects because for starting nature tasks like walking most subjects will use the dominant leg[20].
A 16-channel ME6000 system was utilized with a 16-bit A/D converter and a sampling frequency
of 1000 Hz (Mega Electronics, Finland). Bipolar electrodes containing conductive gel and adhesive
were attached to the skin with a center-to-center distance of 2 cm between electrodes. A foot
scanner was employed to synchronously identify the time interval between heel strikes and toe lifts,
accurately detecting stance phase events during walking.

Data collection

After skin preparation with shaving and using alcohol, surface electrodes were placed on desired
muscles following SENIAM recommendations[21]. Each participant's maximum voluntary
isometric activity was recorded prior to walking trials. Participants walked along a 12-meter
walkway at their preferred speed, and data from the seventh stride was analyzed[22]. Walking speed
was calculated by dividing the walking distance by the walking time[23]. Trials were considered
valid for analysis starting from the third stride onward. The recorded data from the stance phase of
the seventh step is illustrated in Figure 1.
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Figure 1. Recorded data of the support phase of the seventh step

Preprocessing

A band-pass filter was applied with cutoff frequencies of 10 to 480 Hz to eliminate noise from the
raw EMG data in MATLAB software (version a2014). The linear envelope process was applied by
a full rectification and a 20 Hz low pass filter to smooth the rectified signal[24]. The
electromyographic activity of the muscles was normalized based on the maximum value obtained
from the Maximum Voluntary Isometric Contraction (MVIC) test.

The muscle co-contraction variable was calculated using the Equation 2[25].

(Common Area A&B

Equation 2: co-contraction = 2x
Area A+Area B

) x 100

Area A was defined as the area under the EMG curve of muscle A, and area B as the area under the
curve of muscle B in Figure 3. Also the common area A&B was defined as the overlapping area
between muscle A and muscle B on the mean EMG curve.

Statistical analysis

The muscle co-contraction and maximum activity variables were analyzed using SPSS software
(version 22). The most important predictor of lumbar hyperlordosis was identified using a
Multilayer-Perceptron Neural Network[26]. This method as an ANN applies a unit (neuron) whose
output is a nonlinear differentiable function of its input[27]. MLP employs the supervised learning
Backpropagation (BP) algorithm for network training and the gradient descent weight update rule
for computing new weights during the learning process[28, 30].

In this work, the MLP comprised of three layers. The input layer in MLP artificial neural network
can be mathematically described as follows[29]:

Equation 3: Input layer: jo =P units, a0;1,...,a0:jo;with
a0:jo= xj,



where j is the number of neurons in the layer and X is the input.

The neural network was trained to differentiate between the two classes of lordosis angles based on
the input variables (muscle co-contraction and maximum muscle activity). This classification aimed
to identify patterns and predictors associated with varying degrees of lumbar hyperlordosis (class 1
= 30 to 40 degrees and class 2 = greater than 40 degrees). To avoid overfitting, 72.5% (29 people)
of the participants were used for training, and 27.5% (11 people) were used to test the neural
network. The data was validated five times to achieve the best network type with the minimum
errors[31]. The generated neural network is presented in Figure 2.

Input layer Hidden layer Output layer

Rectus femoris and gluteus medius co-
contraction

Rectus femoris and lumbar erector

spinae co-contraction
Hidden neuron 1 Class 1
Gluteus medius and lumbar erector
spinae co-contraction
Rectus femoris maximum activity Class 2

Hidden neuron 2

Gluteus medius maximum activity

Lumbar erector spinae maximum
activity

Figure 2. The three-layered neural network based on the co-contraction and maximum activity of Rectus
femoris, Gluteus medius, Lumbar Erector-spinae.

The clustering of people was done according to the most important predictor using the K-means
clustering method. The algorithm’s goal in this clustering method is to reduce the sum of the
squared error over all k clusters. The objective function to minimize is[28]:

Equation 3: J = X1 kX1 7 ”xi(i) — cj2||,

Where: 1=1, ..., n; , nis the data points to be clustered into k clusters and C = {cj,j=1, ..., K}

is the cluster center.

To identify the most appropriate number of clusters, 2 to 5 clusters were formed[32]. Convergence
achieved due to or no small change in cluster centers. The maximum absolute coordinate change for
any center is 0.000. Shapiro-wilk test was used for normality and a one-way ANOVA test to
investigate the intergroup variance[33].

Results

The muscle co-contraction variable for each three muscles was visually presented in Figure3. The
results of the artificial neural network indicated that the maximum activity of the Rectus Femoris
was the most effective predictor of LH. K-means clustering revealed three homogeneous clusters of
individuals based on muscle activity patterns.
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Figure3. Evaluation of muscles' co-contraction. a) co-contraction of lumbar erector spinae and rectus femoris. b) co-
contrction of rectus femoris and gluteus medius. ¢) co-contrction of lumbar erector spinae and gluteus medius.

Results of the artificial neural network
The results of training five different neural networks were analyzed to determine the highest
prediction accuracy and the lowest errors, as presented in Table 1 below.

Table 1. Accuracy and error percentage of the prediction of the neural networks

The most Clustering Clustering Error Error Neural network
important accuracy accuracy percentage in percentage in
predictive percentage in percentage in the test group the training
variable the test group the training group
group
Rectus femoris 56.3 79.2 43.8 20.8 First
and lumbar

erector spinae
co-contraction

Rectus femoris 90.9 89.7 9.1 10.3 Second
maximum

activity

Gluteus medius  69.2 74.1 30.8 25.9 Third
and lumbar

erector spinae
co-contraction

Gluteus medius 80 60 20 40 Fourth
and lumbar
erector spinae




co-contraction

Gluteus medius  69.2 77.8 30.8 22.2 Fifth
and lumbar

erector spinae

co-contraction

As presented in Table 1, the second network achieved a prediction accuracy of 90.9% in the test
group clustering, making it the best fit network for this analysis. The results from this network were
utilized for the clustering process.

Figure 4 illustrates the effectiveness percentage of each predictor variable related to lumbar
hyperlordosis in the second neural network. The analysis indicates that The maximum activity of
the rectus femoris is the most effective variable in predicting lumbar hyperlordosis, Other muscle
activity variables show lower effectiveness percentages, indicating that they are less significant in
the predictive model for lumbar hyperlordosis.

120% effectiveness percentage

100%

80%

60%

40%

20%

0%
Rectus femoris  Gluteous medius Rectus femorisand Lumbar erector Rectus femoris and Gluteous medius

maximum activity and lumbar lumbar erector  spinae maximum  gluteous medius maximum activity
erectror spinae co- spinae co- activity co-contraction
contraction contraction

Figure 4. The effectiveness percentage of muscle activity variable

Results of K-means

According to Figure 4, the maximum activity of the rectus femoris is identified as the most crucial variable
for predicting lumbar hyperlordosis. It appears that the maximum activity of the rectus femoris tends to
predict lumbar hyperlordosis more effectively than other muscle activity variables. In the present study,
participants were clustered according to their muscle activity patterns, specifically focusing on the
maximum activity of the rectus femoris.

To determine the best clustering type for the study, the results of the one-way ANOVA revealed a
significant difference between all groups within the clusters only with 3 clusters (P<0.05). Table2 presents
the results of this test. Furthermore, when considering three clusters, the convergence between the data and
the cluster center is achieved faster and completed with two clustering repetitions. At the same time, the
number of repetitions reached 6, considering the other number of clusters. Table 3 presents the converging
results.



Table2. ANOVA result for 3 clusters

Cluster Error F Sig.
Mean df Mean Square df
Square

Maximum of 2.549 2 .017 37 150.750 .000

Rectus femoris

Table 3. History of layer-building repetitions

Repetition Mean change of the difference between data and center of the clusters
1 2 3

1 0.079 0.073 0.185

2 0.000 0.000 0.000

Clustering participants of the present study into three clusters resulted in clusters of 30, 8, and 2
participants, which are presented based on the angle of lumbar hyperlordosis and maximum activity of the
rectus femoris with greatest importance in predicting LH in Figures 5 and 6, respectively. As shown in this
table, 8 participants are in the first cluster, 2 in the second cluster, and 30 in the third cluster.

100 4 Lumbar lordosis angle
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Figure 5. Clusters based on the lumbar lordosis angle
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Figure 6. Clusters based on rectus femoris maximum activity

Participants in the second cluster exhibit similar levels of lordosis angle as those in the other clusters;
however, they are categorized separately due to a significantly increased maximum activity of the rectus
femoris. Additionally, participants in the first cluster demonstrate higher maximum activity of the rectus
femoris compared to those in the third cluster.

Discussion

The present study aimed to identifying the most effective muscle predicting lumbar hyperlordosis
during walking with testing the ability of Multilayer-Perceptron neural networks. Additionally,
lumbar hyperlordosis was clustered using a machine learning algorithm based on the most effective
muscle activity variable. These algorithms discover hidden patterns in data without the need for
human intervention[18]. In this study, five independent Multilayer-Perceptron neural networks were
created and compared; the second model exhibited a lower error rate (9.1%) compared with the
others (with the prediction accuracy of 90.9%) and was deemed the best network. Most studies
consider neural networks with an accuracy of 90% or higher to be suitable. Machine learning
approaches collect information from entire time series steps, as opposed to peak or average picking
methods[34]. It is believed that considering a limited number of variables may not lead to
appropriate clustering or may result in very small clusters, illustrating the complexity and diversity
of muscle activity variables[11]. Hence, for more accurate clustering, an artificial neural network
was tested in this study to determine which pattern of muscle activity affects lumbar hyperlordosis
and can be predicted using artificial neural networks (ANNSs). We extended those findings here
demonstrate that the predictive capabilities of ANNSs are retained during walking, allowing for the
identification of the most important features of EMG patterns related to lumbar hyperlordosis and
the development of an accurate model for predicting LH. In the next step, k-means clustering was
applied based on the most effective feaure to find homogeneous groups of individuals with LH,
facilitating the provision of specific modalities. The results of clustering based on key predictor
variables obtained from the neural network revealed three homogeneous groups of individuals.

Recently, the predictive use of neural networks has gained popularity in gait research, being utilized
to predict spinal abnormalities[35], in addition to studying electrical muscle activity during the gait
phase [17, 36, 37]. A study by Kristen Morbidoni et al. predicted foot contact signals from
electromyographic signals of leg and thigh muscles, achieving an accuracy of 94.9% using multi-



layer perceptron neural networks[36]. Another study proposed an artificial neural network to predict
gait phases with an accuracy of 87.5% using five time-dependent muscle activity variables[37].
Zahid Rao et al. demonstrated the use of EMG for predicting outcomes in individuals with
impaired trunk control, achieving an accuracy of 95.44%[38] supporting our assertion regarding the
suitability of machine learning for predicting alignment disorders. Gundala Jhansi Rani et al.
employed machine learning technique to detect knee abnormalities based on EMG signals,
achieving good accuracy and indicating that predicting abnormalities based on muscle activity is
suitable[39] aligning with our results regarding the effectiveness of ML techniques based on EMG.

In addition to presenting our ANN model for prediciting LH based on muscle patterns, we found
that the maximum activity of the Rectus Femoris is the most effective feature for predicting LH.
This emphasizes the relationship between the Rectus Femoris as a hip flexor and lumbar
hyperlordosis during daily activites, which is crucial for rehabilitation[40-42].

Examining the results of K-means clustering according to the maximum activity of Rectus Femoris,
a one-way ANOVA test showed significant differences between clusters. Notably, the lordosis
angle of one cluster was similar to that of the other groups, although they differed regarding the
maximum activity of the Rectus Femoris during the stance phase of gait. The study by lzadi Farhadi
et al.'s indicated increased activity of the Rectus Femoris and Gluteus Maximus in individuals with
lumbar hyperlordosis compared to healthy individuals[6], which is consistent with our findings. A
study by Ruixin Liang et al. (2022) tested paraspinal muscle activity patterns in patients with
scoliosis and identified homogeneous clusters of individuals[43]. Using K-NN and K-Means
methods to cluster the activity patterns of six basic hand gestures, Erhan-Bargil et al. reported
higher accuracy for the second method[44]. Clustering of muscle activity patterns in patients with
hemophilia, cerebral palsy, and diabetes revealed homogenous clusters of patients[22, 32, 45].
Utilizing muscle activity features likely provides a framework for classifying individuals during
walking.

The three clusters of individuals with lumbar hyperlordosis differentiate themselves by more than
just lordosis angles, highlighting the importance of muscle activity for clustering. This new
classification scheme can effectively describe muscle activity patterns while walking. Furthermore,
the findings of this study align with research that identified the Rectus Femoris as a suitable muscle
for clustering patients with low back pain , indicative of LH[45] and may assist in clinical decision-
making differentiation of patients with lumbar hyperlordosis[46]. Overall, the results of the machine
learning model developed in this study suggest that our model is sutiable for predicting individuals
with LH based on EMG signals, facilitating their clustering and providing valuable insights for
clinical applications.

Conclusion

This study provides valuable insights into the application of machine learning techniques for
analyzing EMG patterns in women with lumbar hyperlordosis (LH), potentially informing the
development of more efective treatments. The results indicate that our machine learning (ML)
model is suitable for predicting lumbar hyperlordosis abnormalities based on muscle activity. This
allows therapists to anticipate LH abnormalities in individuals based on muscle patterns. Notably,
the maximum activity of the Rectus Femoris was identified as the most significant factor affecting
LH. This finding suggests that clustering patients with hyperlordosis based on muscle activity,
rather than solely relying on LH angles, may yield more relevant insights in rehabilitation and
health fields, facilitating the identification of homogeneous groups. Considering the associated



variables to muscle activity and the impact of participant numbers on the efficacy of the employed
approach, it is recommended that future studies take these factors into account. We advocate for the
adoption of machine learning as an essential tool for predicting abnormalities, which may enhance
clinical decision-making and improve patient outcomes.
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