Journal of Advanced Sport Technology

DOI: 10.22098/JAST.2025.17299.1422

Received: 31 May 2025 Accepted: 28 October 2025

REVIEWARTICLE

Open Access

Synergistic Effects of Tissue Engineering and Exercise in Sports Injury Rehabilitation: A Systematic Review

Asadollah Asadi^{*1}, Narges Yazdan nasab², Amir Hossein Hormati Oughoulbaig³, shouleh Jahedi⁴, Negar Ashrafi⁵, Qassem Saeed Al-Mousawi, suhad⁶, Fatemeh mojarrad ⁷

- 1. Professor at the Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
- 2. Ph.D. Candidate of Cellular and Molecular Biology, Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil. Iran.
- 3. Ph.D. Candidate of Sport Physiology, Department of Sport Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.
- 4. Master's student in Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, Mohaghegh Ardabili University, Ardabil, Iran.
- 5. Department of Educational Sciences, Faculty of Education, University of Farhangian, Ardabil, Iran.
- 6. Professor at the College of Physical Education and Sports Sciences for Women, University of Baghdad.
- 7. Ph.D. Candidate of Cellular and Molecular Biology, Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Iran. **Correspondence** Asadollah Asadi/asady@uma.ac.ir

Asadi, A., Yazdannasab, N., Hormati Oughoulbaig, A. H., Jahedi, S., Ashrafi, N., Qassem Saeed Al-Mousawi, S., mojarrad, F. Synergistic Effects of Tissue Engineering and Exercise in Sports Injury Rehabilitation: A Systematic Review. *Journal of Advanced Sport Technology*, 2025; 9(4): -. doi: 10.22098/jast.2025.17299.1422

ABSTRACT

Background: The increasing prevalence of sports injuries poses a significant challenge to athletes, impacting their performance, quality of life, and long-term musculoskeletal health. When integrated with targeted exercise regimens, such as neuromuscular training or Tai Chi, these advanced therapies enhance biomechanical resilience and accelerate recovery. This systematic review evaluates the synergistic effects of combining tissue engineering techniques with exercise-based rehabilitation strategies to optimize recovery outcomes and restore athletic performance in sports medicine, addressing persistent challenges in injury management.

Methods: This systematic review examined English-language articles published between 2020 and 2025, sourced from PubMed, Scopus, Web of Science, ScienceDirect, Google Scholar, JCR, and ISC, using keywords such as tissue engineering, regenerative medicine, stem cells, scaffolds, platelet-rich plasma, and sports injuries. Inclusion criteria prioritized studies integrating tissue engineering with exercise or rehabilitation strategies for injury recovery, while excluding those involving unrelated diseases or prior surgeries. Of the 86 retrieved articles, 15 high-quality studies were ultimately selected following quality assessment using the Dunn and Black questionnaire, which emphasized their contribution to health improvement and sports injury rehabilitation.

Results: These 15 studies demonstrate that the integration of tissue engineering and exercise significantly enhances recovery outcomes for sports injuries. With AI-aided design, stem cells and scaffolds, such as Nano fibers, speed healing, especially for hips and muscles. Exercises like Tai Chi or neuromuscular training help, mostly for women and younger folks, though some combos don't add extra perks. PRP combined with stem cells is highly effective in promoting cartilage repair, advancing the development of hybrid treatments.

Conclusions: Mixing tissue engineering with exercises like Tai Chi transforms injury recovery, making tissues stronger for sports. Imaging and wearables tailor treatments, but tricky protocols, high costs, and age or gender differences need fixing with standard, affordable plans and AI-powered

research. Tissue engineering and exercise together revolutionize sports injury recovery, using stem cells, scaffolds, and PRP to heal fast and strengthen joints. Imaging and wearables help personalize care, but varied methods, costs, and individual differences call for more research to make it accessible for all.

KEYWORDS

Health Care Reform, Mesenchymal Stem Cells, Stem Cells, Tissue Engineering, Wound Healing

https://jast.uma.ac.ir/

Introduction

Sports injuries are one of the major challenges in the field of health, significantly impacting athletes' performance and quality of life. The prevalence of these injuries, particularly among professional athletes and fitness enthusiasts, is rising (1). Exercise plays a key role in maintaining public health and helps reduce the risk of diseases such as obesity. However, increased physical activity also raises the likelihood of acute and chronic injuries, which can lead to long-term complications if not properly treated (2). Additionally, traditional treatment methods like rest and physiotherapy require prolonged recovery and do not always guarantee full rehabilitation (3). Within this context, tissue engineering as a branch of regenerative medicine has introduced innovative solutions for regenerating and repairing damaged tissues by utilizing biomaterials, cells, and growth factors. This technology, which involves the application of biological scaffolds, stem cells, and growth factors to stimulate tissue regeneration, has demonstrated promising results in treating sports-related injuries (4). Notably, stem cells have emerged as a groundbreaking approach for cartilage and other tissue regeneration, with their multipotent differentiation capacity significantly accelerating athletes' recovery (3). Platelet-rich plasma (PRP) therapy has also gained attention as a complementary treatment alongside tissue engineering, enhancing repair processes and mitigating inflammation (5). Furthermore, advanced medical imaging technologies are pivotal in precise injury assessment and rehabilitation monitoring, enabling clinicians to diagnose pathologies more accurately and optimize treatment protocols (3). Collectively, these advances in tissue engineering allow athletes to resume athletic activities faster while improving their quality of life. Concurrently, structured exercise programs substantially enhance musculoskeletal health and joint stability. Targeted rehabilitative exercises and advanced physiotherapy techniques can reduce recovery time and reinforce damaged structures (3, 4). However, exercise alone is insufficient; its integration with novel therapies like tissue engineering yields superior outcomes. The synergy between tissue engineering and exercise regimens offers an effective strategy for structural tissue regeneration and functional recovery. For instance, combining bioactive scaffolds and stem cells with tailored exercise programs promotes tissue repair while improving biomechanical resilience (6). Adjunctive therapies such as PRP, coupled with therapeutic exercise, further accelerate healing and suppress inflammatory responses. This article highlights the critical role of tissue engineering and exercise science in sports injury management, demonstrating how their integration provides a more effective framework for injury mitigation and athletic performance restoration. Given recent advancements in tissue engineering and rehabilitative training, a combinatorial approach may address persistent challenges in sports medicine.

Methods

The present study is a systematic review conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive and reproducible search strategy was executed to identify all relevant English-language articles published between January 2020 and June 2025. The following electronic databases were systematically searched: Google Scholar, Scopus, WoS, PubMed, Science Direct, JCR, and ISC were utilized. To ensure transparency and replicability, the specific Boolean search query used for PubMed is provided below and was adapted with appropriate syntax for each subsequent database: ("tissue engineering" OR "regenerative medicine" OR "stem cells" OR "scaffold" OR "biomaterial" OR "platelet-rich plasma") AND ("sports injuries" OR "athletic injuries" OR "musculoskeletal injuries") AND ("exercise" OR "rehabilitation" OR "physical therapy" OR "training"). The search included peerreviewed articles published and available online via 'Early Access' or 'Online First' channels with a final DOI by June 1, 2025, to encompass the very latest findings in this rapidly evolving field. The inclusion and exclusion criteria for the study were as follows:

- 1. All articles focused on combining tissue engineering techniques with physical exercises.
- 2. Study participants had to have experienced injuries.
- 3. Articles in which participants suffered from specific diseases or had a history of surgery were excluded.
- 4. Selected articles had to be recent and of high quality.
- 5. Full-text access to the articles was required.

Ultimately, 86 articles were retrieved based on the keywords used. After the removal of 12 duplicates, 74 records were screened. Following a thorough review of the articles' titles and abstracts, 59 records were excluded as they did not meet the inclusion criteria. The remaining 15 full-text articles were assessed for eligibility. Following quality assessment using the Dunn and Black questionnaire, these 15 high-quality articles were selected and analyzed by researchers.

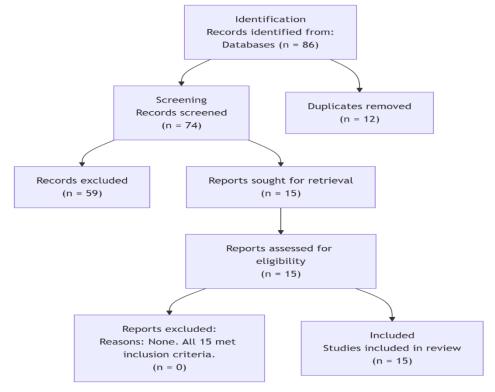


Figure 1. PRISMA flow diagram illustrating the process of study selection for the systematic review

Results

Out of 86 retrieved articles, 15 studies met the inclusion criteria and were evaluated. Two studies reported the use of mesenchymal stem cells (MSCs) in sports injuries, with outcomes indicating accelerated healing and reduced recovery time (7,12). One study investigated tendon-derived stem cells (TDSCs) for tendon-bone interface regeneration and described knowledge gaps in their differentiation pathways (10). Another study examined stem cell transplantation in neuronal injuries and reported enhanced tissue regeneration, while noting challenges in cell type selection and microenvironment design (12). One additional study addressed stem cell-based orthopedic tissue engineering for bone and joint repair, emphasizing the role of scaffold and signaling molecule selection (14). Two studies described the importance of combining cells, biosignals, and scaffolds for constructing functional grafts (8,11). One study reported the application of nanofiber scaffolds in hip injury rehabilitation, with improved outcomes compared to conventional treatments (16). Another study documented the use of AC-DC implants mimicking musculoskeletal properties for post-injury recovery (18). The integration of artificial intelligence (AI) into tissue engineering was proposed in one study as a means to refine scaffold design and outcome prediction (11). Regarding rehabilitation programs, one study evaluated hTEMGs stimulation by agrin or exercise and reported improved muscle recovery, though no additive benefit was observed when both interventions were combined (9). Another study investigated the iSPRINT neuromuscular training warm-up and found preventive effects in female students but not in males (19). Tai Chi, as a post-surgical intervention, was reported in one study to improve recovery and reduce complications (16). An animal study compared young and aged mice following treatment, reporting higher force production in younger mice and reduced exercise tolerance in aged mice (14). One study proposed the combination of platelet-rich plasma (PRP) with stem cell therapy to support cartilage regeneration in sports-related injuries (5). One review article summarized biomedical innovations in sports medicine and their role in reducing recovery time (13), while another review synthesized evidence regarding soft tissue rehabilitation methods (18).

Table 1 - Review of the role of tissue engineering techniques and exercise programs to improve health and repair sports injuries.

Authors, Journal Name, and Publication Year	Name of the study	Type of study	method	Independen t Variables	Dependent Variables	Conclusions	Limitatio ns
Mobayed et al.	The therapeutic	Revie	Literature	MSC	Treatment	MSCs	MSCs
	potential of	W	review of MSCs	therapy	outcomes	therapy	research
Prospects in	mesenchymal	Article	therapy for	characterist	(healing	accelerates	mainly
Pharmaceutical	stromal cells		sports injuries.	ics (cell	effectiveness	healing and	targets
Sciences	and their		Data obtained	source,	, functional	reduces	specific
	secretome in		from PubMed	type, injury	recovery,	downtime in	types,
2025	sport-related		and Google	treated).	safety).	sports	with
(7)	injuries		Scholar			injuries.	limited
			searches.				study of
							other
							sources.
Sopilidis et al.	Integrating	Revie	combination of	Modern	Graft	Successful	Current
	Modern	W	stem cells,	tech (AI,	success,	tissue-	drawbacks
Bioengineering	Technologies	Article	scaffolds, and	smart	patient	engineered	in creating
	into Traditional		growth factors.	scaffolds,	recovery	grafts require	successful
2025	Anterior		Incorporation of	biofactors)	speed, and	specific	tissue-
(8)	Cruciate		mechanical	combined	long-term	components	engineere
	Ligament			with			d grafts.

	Tissue Engineering		stimuli and new technologies.	standard methods.	joint stability.	and techniques. New technologies like AI could enhance tissue engineering.	Complicat ions vary by graft type and technique used.
Mihaly et al.	Neuromuscular	Experi	Human	Agrin	Acetylcholin	hTEMGs	Agrin and
	Regeneration of	m	myogenic	treatment	e receptor	with agrin or	exercise
Advanced	Volumetric	ental	progenitor-	in tissue-	cluster	exercise	provide no
Healthcare Materials	Muscle Loss Injury in	Study	seeded tissue- engineered	engineered muscle	density Muscle mass	enhance muscle	additional benefit
Materials	Response to		muscle grafts	grafts	recovery and	recovery.	together.
2024	Agrin-		(hTEMGs)	Endurance	force output	Agrin and	Limited
(9)	Functionalized		Agrin treatment	exercise	1	exercise	evaluation
	Tissue		and	regimen for		together show	of
	Engineered		rehabilitative	neuromusc		no additional	combinato
	Muscle Grafts and		exercise (treadmill	ular		benefits.	rial treatment
	Rehabilitative		training)	recovery			modalities
	Exercise		uruming)				
Shen et al.	A New Tissue	Experi	Combining	Application	Tendon-	TDSCs show	Limited
	Engineering	m	tendon-derived	of tissue	bone	promise for	prior
Orthopaedic	Strategy to Promote	ental Study	stem cells with tissue	engineering	interface	tendon-bone	exploratio n of
Surgery	Tendon-Bone	Study	engineering	strategies to regulate	regeneration quality,	healing therapies.	tendon-
2024	Healing:		methods.	TDSC	osteogenic/	Future	derived
(10)	Regulation of		Analyzing	differentiati	chondrogeni	research is	stem cells
	Osteogenic and		transcriptional	on (e.g.,	c marker	needed on	(TDSCs).
	Chondrogenic		and molecular	biochemica	expression,	TDSCs'	Outcomes
	Differentiation of Tendon-		regulatory variables for	1/ mechanical	and biomechanic	differentiatio n pathways.	of current treatment
	derived Stem		differentiation.	cues).	al strength.	ii paiiiways.	modalities
	Cells			,-	28		often fall
							short.
Wang et al.	[Research	Revie	Fabrication of	Application of tissue	Tendon	Optimal combinations	Traditiona
Zhongguo gu	progress on the repair of tendon	w Article	tendon tissue scaffolds	engineering	repair effectiveness	of cells,	l methods seldom
shang China	injuries with	Tittele	Selection of	techniques	, functional	biosignals,	restore
journal of	Tissue		seed cells and	(e.g.,	recovery,	and scaffolds	tendon
orthopaedics	Engineering		modulation	scaffold	and	are crucial.	function;
and	Technology].		strategies	types, cell	reduction of	Tissue	key
traumatology				sources, growth	post-injury complicatio	engineering techniques	challenges are faster
2024				factors).	ns.	can enhance	healing,
(11)				,		tendon injury	stronger
						repair.	tissue, and
							preventing
Bingnan et al.	Enhancing	Revie	Stem cell	Stem cell	Neural	Stem cell	adhesions. Proper
Dinghan et al.	regenerative	W	transplantation	transplantat	regeneration	transplantatio	selection
Tissue and cell	potential: A	Article	for spinal cord	ion	outcomes,	n enhances	of suitable
	comprehensive		injuries.	approaches	functional	regeneration	stem cell
2024	review of stem		Secretion of	(cell types,	recovery,	in neuronal	candidates
(12)	cell transplantation		neurotrophic factors for	delivery methods,	and biomarker	injuries. Challenges	Establishi
	for sports-		tissue	targeting	improvemen	include	ng an
	related neuronal		regeneration.	strategies).	ts.	selecting	appropriat
	injuries, with a			<i>5</i> ,.		suitable stem	е
	focus on spinal					cells and	microenvi
	cord injuries					creating a	ronm
	and peripheral					supportive	ent for SC
	nervous system damage					environment.	repair.
	34111450						

Demiray et al.	Clinical tissue engineering	Revie W	Regenerative medicine and	Clinical application	Athlete	Biomedical advances can	Long
Spor Hekimliği Dergisi	approach and biotechnologica l advances to	Article	biotechnology- based therapeutic	of tissue engineering and	time, performance restoration,	shorten recovery and minimize	periods overshado w sports
2023 (6)	improve athlete healthcare		methods Wearable	biotechnolo gical	and injury prevention	performance loss.	competitions.
(-)			technologies for health	innovations	effectiveness	Regenerative medicine aids	Performan ce loss
			monitoring and	(e.g., biomaterial	•	in treating	compared
			injury prevention	s, wearable tech).		common athletic	to pre- injury
			prevention	tecii).		injuries.	levels.
Yu et al.	Utilizing stem cells in	Revie	Utilization of stem cells (SCs)	Stem cell- based	Tissue reconstructi	Stem cell	-
Tissue and Cell	reconstructive	w Article	Selection of	reconstructi	on quality,	orthopedic engineering	
2022	treatments for		appropriate scaffolds and	ve	functional	regenerates	
2023 (13)	sports injuries: An innovative		inducing	treatments (e.g., cell	restoration, and return-	bone and joints,	
	approach.		molecules	types,	to-sport	needing	
				delivery techniques)	outcomes.	suitable scaffolds and	
				•		inducing	
Habing et al.	Age-Associated	Revie	Engineered	Engineered	Running	molecules. Mice show	Few
_	Functional	W	muscle with	muscle	volumes and	enhanced	studies
Biomaterials Science	Healing of Musculoskeletal	Article	nanofibrillar- aligned	treatment with	intensities in mice	force production	assess lifespan
Science	Trauma		collagen and	myogenic	Enhanced	post-	effects;
2023 (14)	Through Regenerative		myogenic cells. Voluntary	cells Voluntary	force production	treatment. Aged mice	aged mice perform
(14)	Engineering		running activity	running	after	perform	worse
	and Rehabilitation		post-volumetric	activity	treatment	lower running	than
	Renadintation		muscle loss injury.	post-VML injury		volumes and intensities.	young mice in
		- ·			T :	m:	running.
Mayank	Preparation Method for	Experi m	Preencapsulatio n of seed cells	Treatment methods:	Ligament function	Tissue engineering	Complicat ions like
International	Repairing	ental	by gel.	common	rehabilitatio	improves	pain and
Journal of Health and	Sports Exercise Injury Based on	Study	Electrospinning to prepare	care, nano- ligament,	n assessment records	ligament repair	stiffness limit
Pharmaceutical	Tissue		degradable	Tai Chi	Scores on	outcomes	recovery
Medicinen	Engineering Ligament		polymer scaffold.	therapy Patient	mental health and	significantly. Tai Chi	progress. No studies
2022	8			groups:	joint	enhances	on
(15)				control group,	function	recovery and reduces	nanofiber degradatio
				observation		complications	n affecting
				group		post-surgery.	treatment time.
Xiang et al.	Application of Nanoscaffold	Experi m	Electrospinning method for	Nanoscaffo ld material	Hip range of motion score	Nanofiber scaffolds	-
Journal of	Material	ental	nanoscaffold	type	Overall	improve hip	
Nanomaterials	Combined with Exercise	Study	preparation.	Exercise rehabilitati	function	injury rehab and reduce	
2022	Rehabilitat		Application of nanoscaffold in	on therapy	score	complications	
(16)	etion Therapy		exercise	method		versus	
	in the Treatment of		rehabilitation therapy.			traditional methods.	
	Athletes with		· · · · · · · · · · · · · · · · · · ·				
Mylonas et al.	Hip Injuries Soft-Tissue	Revie	Soft tissue	Application	Range of	Soft tissue	No control
•	Techniques in	W	techniques:	of soft-	motion	techniques	group in
	Sports Injuries	Article	massage,	tissue techniques	(ROM)	support sports injury	research studies.
				cenniques		iiijui y	studies.

Contemporary Advances in Sports Science 2021 (17)	Prevention and Rehabilitation		cupping, mobilisation. Therapeutic interventions: enhance soft tissue health mechanically.		improvemen t Reduction of pain	prevention and rehab, backed by recent evidence.	Small sample size of examinees
Christensen et	Assembled	Experi	Microfluidic	Type of	Metabolic	AC-DC	
al.	Cell-Decorated	m	wet-spinning of	implant:	activity of	implants	
	Collagen (AC-	ental	collagen fibers.	acellular	AC-DC	mimic native	
bioRxiv	DC) bioprinted	Study	Histological	vs. cellular	implants	musculoskele	
	implants mimic		and	Time	Functional	tal tissue	
2021	musculoskeletal		immunofluoresc	points: 1, 4,	recovery in	properties.	
(18)	tissue properties		ent	and 7 days	the rodent	Promote	
	and promote		scanning		VML model	functional	
	functional		examination of			recovery in	
	recovery		muscle tissues.			musculoskele	
	TD1 1 C	D '	T :	A 1: .:	m:	tal injuries.	NT.
Abdolmaleki et al.	The role of tissue	Revie w	Tissue	Application of tissue	Tissue	Tissue	New tissue
aı.	engineering and	w Article	engineering approaches for	engineering	regeneration quality,	engineering, including	regenerati
Trauma	regenerative	Aiticle	cartilage	and	functional	PRP and stem	on
Monthly	medicine in the		regeneration	regenerativ	recovery	cell therapy,	techniques
Wilding	treatment of		Platelet-rich	e medicine	outcomes,	can enhance	are rarely
2020	sport injuries a		plasma therapy	techniques	and return to	cartilage	used and
(5)	review study		and stem cell	(e.g.,	sport	regeneration	need
(-)	,		therapy for	scaffolds,	timelines.	in sports	wider
			tissue healing	cells, PRP		injuries.	adoption.
				therapy).		J	•
Emery et al.	Implementing a	Rando	Cluster	Neuromusc	All recorded	iSPRINT	Limited
	junior high	m	randomised	ular	sport and	NMT warm-	generaliza
British journal	school-based	ized	controlled trial	training	recreation	up prevents	bility due
of sports	programme to	trial	design	warm-up	injuries	injuries in	to school
medicine	reduce sports	study	implemented.	program	Lower	female	participati
2020	injuries through		Neuromuscular	(iSPRINT)	extremity	students.	on rates.
2020	neuromuscular		training warm-	Standard-	injuries	No protective	Potential
(19)	training (iSPRINT): a		up delivered by teachers.	of-practice warm-up	requiring medical	effect found for male	under- reporting
	cluster		teachers.	program	attention	students.	of injuries
	randomised			program	attention	students.	by athletic
	controlled trial						therapists.
	(RCT).						morapists.

Table 2: Evaluation of the quality of articles using the Downs and Black questionnaire

Studies Titles	Mo ba yed et al	Sop i lidis et al.	Mih aly et al. (9)	Sh en et al.	Wa ng et al. (11)	Bin g nan et al. (20)	De m iray et al.	Yu et al. (13)	Ha b ing et al. (14)	Ma y ank (15)	Xia ng et al. (21)	Myl Onas et al. (17)	Chri s tense n et al. (18)	Ab do Lm al eki et al. (5)	Em ery et al. (19)
Have the assumptions and objectives of the study been clearly explained?	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Are the main results clearly described?	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Are the characteristics	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

of the notionts						1							1		
of the patients clearly															
described?															
Are the	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
interventions															
described?															
Are there any	0	1	1	1	0	1	0	0	1	1	1	0	1	1	0
explanations															
provided about															
confounding factors?															
Are the findings	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
clearly	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
described?															
Are data from	1	0	1	1	0	1	0	0	1	0	1	1	0	1	1
this study															
presented in a															
randomized															
manner for the															
main outcomes?	0	0	1	1	0	0	1	1	0	1	1	1	0	1	1
Have any side effects been	0	0	1	1	"	"	1	1	U	1	1	1	"	1	1
reported?															
Is information	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
provided about			,	3											,
patients															
dropping out of															
the study and its															
complications?															
Are actual data	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
values reported															
(exactly, not															
estimated)? Is information	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
provided on how	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
to select study															
samples?															
Were the	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
subjects															
prepared to take															
the test?															
Is information	0	0	1	0	1	0	0	0	1	0	1	1	0	1	1
provided about															
location characteristics															
and facilities?															
Is information	1	0	0	1	1	1	0	1	0	1	0	1	1	0	1
provided about			-												
the interventions															
that patients															
tried?															
Has information	0	1	0	0	1	0	1	1	0	0	1	0	1	0	1
been provided to															
standardize the															
study? Are the study	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
results clearly	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
described after															
normalization of															
the data?													<u> </u>		
Is information	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
provided on the															
results of the															
intervention and															
control groups?	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Were	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
appropriate statistical tests															
used to analyze															
the data?															
	1	1			1	I	1	l	l					1	

Were the interventions reliable?	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Was the primary outcome measure reliable?	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Were the groups receiving different interventions?	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Were subjects randomized?	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Were subjects randomly assigned to groups?	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Were interventions randomized?	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Were conditions for uncontrolled factors considered?	0	0	1	1	0	1	0	0	1	0	1	0	1	0	1
Did you have a specific plan for attrition?	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Are the articles reliable and citation-worthy?	3	3	4	2	3	3	2	3	4	5	3	4	3	5	3
Quality of articles in percentage	67.74	67.74	80.64	74.19	70.96	74.19	64.51	70.96	77.41	77.41	80.64	77.41	74.19	80.64	80.64

Discussion

The findings of this review highlight the emerging potential of combining tissue engineering strategies with exercise-based rehabilitation to enhance recovery from sports injuries. Compared to traditional methods such as rest or standard physiotherapy, this integrative approach appears to provide faster and more complete restoration of function (3,4). Stem cell-based therapies play a central role in this progress. Mesenchymal stem cells (MSCs) have demonstrated the capacity to support tendon and cartilage repair through differentiation and paracrine signaling, thereby accelerating healing processes (7). Tendon-derived stem cells (TDSCs) show particular promise for regeneration at the tendon-bone interface, although further research is needed to clarify their differentiation mechanisms and optimize clinical applications (10,12). Similarly, stem cell transplantation for neuronal and orthopedic injuries has shown potential, but issues such as appropriate cell type selection and the creation of supportive microenvironments remain key challenges (12,14). Tissue engineering techniques, including the use of nanofiber scaffolds and biomimetic implants such as AC-DC devices, have demonstrated superior functional outcomes compared to conventional treatments, particularly in musculoskeletal and hip injury repair (17,19). These biomaterials provide structural and biochemical support for cell activity. However, the challenge lies in optimizing the combination of scaffolds, cells, and biosignals to achieve reproducible outcomes, highlighting the need for standardized protocols (8,11). Advanced technologies such as AI may further refine scaffold design and personalize treatment approaches (11). Exercise-based interventions complement these regenerative strategies. Evidence suggests that neuromuscular training programs, Tai Chi, and specialized stimulation protocols can enhance recovery and reduce complications in specific populations (9,16,19). However, their effectiveness appears to vary across

groups; for instance, preventive benefits of iSPRINT were observed only in female students, while age-related differences in treatment response were evident in animal studies (15,19). These findings emphasize the importance of tailoring rehabilitation to patient characteristics, such as age and sex. The integration of platelet-rich plasma (PRP) with stem cell therapy has been proposed as a synergistic strategy for cartilage regeneration and inflammation control, offering additional opportunities to shorten recovery time (5). Advances in biomedical innovations, coupled with imaging technologies and wearables, may further enhance monitoring, treatment personalization, and long-term outcomes (3,13,16,17). Despite these promising findings, several challenges remain. Variability in study designs, cell sources, scaffold types, and rehabilitation protocols limits comparability and generalization of results (5–19). Long-term safety and durability of biomaterials also require further investigation (16,17). Moreover, the cost of advanced regenerative therapies may restrict their accessibility in clinical practice, underscoring the importance of cost-effectiveness analyses. Overall, the convergence of tissue engineering, regenerative medicine, and exercise-based interventions represents a transformative approach in sports medicine. To maximize its clinical translation, future research should focus on large-scale, long-term studies, comparative analyses of cell types and biomaterials, and the development of standardized guidelines. With continued innovation and optimization, this integrative strategy holds significant potential to accelerate recovery and improve outcomes for athletes across disciplines (5–19).

Conclusion

The integration of tissue engineering with targeted exercise programs offers a novel approach to sports injury treatment, promoting faster recovery and stronger joints and muscles. The results indicate that advanced materials like nanofiber scaffolds and collagen implants, combined with stem cell therapies and PRP, accelerate tissue healing. When paired with tailored rehabilitation exercises, such as neuromuscular strengthening or post-surgical movements, recovery time decreases and joints become more resilient. Advanced tools like precise imaging and wearables allow real-time monitoring and personalized treatment plans. Challenges remain, including variability in study methods, limited long-term data, high costs, and individual differences in treatment responses, highlighting the need for personalized and accessible therapies.

Author Contributions

All authors contributed equally to the conception, design, literature search, data extraction and synthesis, drafting, and critical revision of this systematic review manuscript. All authors approved the final version and agree to be accountable for all aspects of the work.

Funding

Authors state no funding involved.

Conflict of Interest

The authors declare that there are no conflicts of interest regarding the publication of this manuscript

Acknowledgment

The authors gratefully acknowledge the contributions of all co-authors for their collaborative efforts in compiling and writing this review.

References

1. Li P, Zhou J. Application of plastic conjugated materials in the repair of sports injury. Frontiers in Chemistry. 2023;11:1273726. https://doi.org/10.3389/fchem.2023.1273726

- 2. Sheu Y, Chen L-H, Hedegaard H. Sport And Recreation Related Injury Episodes In The US Population: 2011–2014: 3068 Board# 133 June 3, 3: 30 PM-5: 00 PM. Medicine & Science in Sports & Exercise. 2016;48(5S):868. https://doi.org/10.1249/01.mss.0000487603.12911.c4
- 3. Lee HT, Roh HL, Kim YS. Cardiorespiratory endurance evaluation using heart rate analysis during ski simulator exercise and the Harvard step test in elementary school students. Journal of physical therapy science. 2016;28(2):641-5. https://doi.org/10.1589/jpts.28.641
- 4. Cheng X. EFECTOS DEL DEPORTE EN EL DESARROLLO DEL ESQUELETO EN LOS ADOLESCENTES. Revista Brasileira de Medicina do Esporte. 2022;28:679-81. https://doi.org/10.1590/1517-8692202228062022_0048
- 5. Abdolmaleki A, Zahri S, Asadi A, Wassersug R. Role of tissue engineering and regenerative medicine in treatment of sport injuries. Trauma Monthly. 2020;25(3):106-12. https://doi.org/10.1016/j.reth.2020.03.004
- 6. Demiray EB, Kurt T, Duman ZY, Özdemir BN, Erkovan B, Yiğit GS, et al. Clinical tissue engineering approach and biotechnological advances to improve athlete healthcare. Spor Hekimliği Dergisi. 2023;58(4):185-92. https://doi.org/10.47447/tjsm.0757
- 7. Mobayed N, Joujeh D. The therapeutic potential of mesenchymal stromal cells and their secretome in sport-related injuries. Prospects in Pharmaceutical Sciences. 2025;23(1):9-24. https://doi.org/10.56782/pps.271
- 8. Sopilidis A, Stamatopoulos V, Giannatos V, Taraviras G, Panagopoulos A, Taraviras S. Integrating Modern Technologies into Traditional Anterior Cruciate Ligament Tissue Engineering. Bioengineering. 2025;12(1):39. https://doi.org/10.3390/bioengineering12010039
- 9. Mihaly E, Chellu N, Iyer SR, Su EY, Altamirano DE, Dias ST, et al. Neuromuscular regeneration of volumetric muscle loss injury in response to agrin-functionalized tissue engineered muscle grafts and rehabilitative exercise. Advanced Healthcare Materials. 2025;14(2):2403028. https://doi.org/10.1002/adhm.202403028
- 10. Shen S, Lin Y, Sun J, Liu Y, Chen Y, Lu J. A New Tissue Engineering Strategy to Promote Tendon-bone Healing: Regulation of Osteogenic and Chondrogenic Differentiation of Tendon-derived Stem Cells. Orthopaedic Surgery. 2024;16(10):2311-25. https://doi.org/10.1111/os.14152
- 11. Wang Y-J, Kong L-T, Xu S-G. Research progress on the repair of tendon injuries with Tissue Engineering Technology. Zhongguo gu shang= China journal of orthopaedics and traumatology. 2024;37(11):1126-31. https://doi.org/10.12200/j.issn.1003-0034.2024.0545
- 12. Bingnan W, Jiao T, Ghorbani A, Baghei S. Enhancing regenerative potential: A comprehensive review of stem cell transplantation for sports-related neuronal injuries, with a focus on spinal cord injuries and peripheral nervous system damage. Tissue and cell. 2024;88:102429. https://doi.org/10.1016/j.tice.2024.102429
- 13. Yu H, Habibi M, Motamedi K, Semirumi D, Ghorbani A. Utilizing stem cells in reconstructive treatments for sports injuries: An innovative approach. Tissue and Cell. 2023;83:102152. https://doi.org/10.1016/j.tice.2023.102152
- 14. Habing KM, Alcazar CA, Duke VR, Tan YH, Willett NJ, Nakayama KH. Age-associated functional healing of musculoskeletal trauma through regenerative engineering and rehabilitation. Biomaterials Science. 2024;12(20):5186-202. https://doi.org/10.1039/d4bm00616j
- 15. Mayank B. Preparation Method for Repairing Sports Exercise Injury Based on Tissue Engineering Ligament. 2022. https://doi.org/10.38007/ijhpm.2022.030303
- 16. Xiang M, Cao F, Peng J, Bai G. [Retracted] Application of Nanoscaffold Material Combined with Exercise Rehabilitation Therapy in the Treatment of Athletes with Hip Injuries. Journal of Nanomaterials. 2022;2022(1):6582511. https://doi.org/10.1155/2022/6582511

- 17. Mylonas K, Angelopoulos P, Tsepis E. Soft-Tissue Techniques in Sports Injuries Prevention and. Contemporary Advances in Sports Science. 2021:85. https://doi.org/10.5772/intechopen.96480
- 18. Christensen KW, Turner J, Coughenour K, Maghdouri-White Y, Bulysheva AA, Sergeant O, et al. Assembled Cell-Decorated Collagen (AC-DC) bioprinted implants mimic musculoskeletal tissue properties and promote functional recovery. bioRxiv. 2021:2021.06. 22.449431. https://doi.org/10.1002/adhm.202101357
- 19. Emery CA, van Den Berg C, Richmond SA, Palacios-Derflingher L, McKay CD, Doyle-Baker PK, et al. Implementing a junior high school-based programme to reduce sports injuries through neuromuscular training (iSPRINT): a cluster randomised controlled trial (RCT). British journal of sports medicine. 2020;54(15):913-9. https://doi.org/10.1136/bjsports-2019-101117

نشريه فناورى ورزشى پيشرفته

DOI: 10.22098/jast.2025.17299.1422

تاریخ پذیرش: ۶ / ۸ / ۴۱۴۰۴

تاریخ دریافت: ۱۴۰۴ / ۳ / ۱۴۰۴

«مقاله مروري »

اثرات همافزایی مهندسی بافت و ورزش در توانبخشی آسیبهای ورزشی: یک مرور سیستماتیک

اسداله اسدی*ا، نرگس یزدان نسب 7 ، امیرحسین حرمتی اوغول بیگ 7 ، شعله جاهدی 4 ، نگار اشرفی 6 ، قاسم سعید الموسوی، سُهر 4 فاطمه مجرد 4

- ۱- استاد گروه زیستشناسی، دانشکده علوم، دانشگاه محقق اردبیلی، اردبیل، ایران
- ۲- دانشجوی دکتری زیستشناسی سلولی و مولکولی، گروه زیستشناسی، دانشکده علوم، دانشگاه محقق اردبیلی، اردبیل، ایران
- ۳- دانشجوی دکتری فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی، اردبیل،
 ایران
- ۴- دانشجوی کارشناسی ارشد زیستشناسی سلولی و مولکولی، گروه زیستشناسی، دانشکده علوم، دانشگاه محقق اردبیلی، اردبیل، ایران
 - ۵- گروه علوم تربیتی، دانشکده علوم تربیتی، دانشگاه فرهنگیان، اردبیل، ایران
 - ۶- استاد دانشکده تربیتبدنی و علوم ورزشی ویژه بانوان، دانشگاه بغداد
 - ۷- دانشجوی دکتری زیستشناسی سلولی و مولکولی، گروه زیستشناسی، دانشکده علوم، دانشگاه محقق اردبیلی، ایران نویسنده مسئول: اسداله اسدیasady@uma.ac.ir

Asadi, A., Yazdannasab, N., Hormati Oughoulbaig, A. H., Jahedi, S., Ashrafi, N., Qassem Saeed Al-Mousawi, S., mojarrad, F. Synergistic Effects of Tissue Engineering and Exercise in Sports Injury Rehabilitation: A Systematic Review. *Journal of Advanced Sport Technology*, 2025; 9(4): -. doi: 10.22098/jast.2025.17299.1422: https://jast.uma.ac.ir/

چکیده

هدف:: شیوع روزافزون آسیبهای ورزشی چالش قابل توجهی را برای ورزشکاران ایجاد می کند و بر عملکرد، کیفیت زندگی و ساامت اسکلتی-عضاانی درازمدت آنها تأثیر می گذارد. این درمانهای پیشرفته هنگامی که با رژیمهای ورزشی هدفمند، مانند تمرینات عصبی-عضاانی یا تای چی، ادغام می شوند، انعطاف پذیری بیومکانیکی را افزایش داده و بهبودی را تسریع می کنند. این بررسی سیستماتیک، اثرات هم افزایی ترکیب تکنیکهای مهندسی بافت با استراتژیهای توانبخشی مبتنی بر ورزش را برای بهینه سازی نتایج بهبودی و بازیابی عملکرد ورزشی در پزشکی ورزشی ارزیابی می کند و به چالشهای مداوم در مدیریت آسیب می پردازد.

روش شناسی: این مرور سیستماتیک مقالات منتشر شده به زبان انگلیسی در بازه زمانی ۲۰۲۰ تا ۲۰۲۵ را مورد بررسی قرار داد. منابع شامل پایگاههای ISC و JCR ،Google Scholar ،ScienceDirect ،Web of Science ،Scopus ،PubMed و از کلیدواژههایی مانند مهندسی بافت، پزشکی بازساختی، سلولهای بنیادی، داربستها، پلاسما غنی از پلاکت و آسیبهای ورزشی استفاده شد. معیارهای ورود شامل مطالعاتی بود که ترکیب مهندسی بافت با برنامههای ورزشی یا توان بخشی برای بهبود آسیبها را بررسی کردهاند، و مطالعات مرتبط با بیماریهای غیرمرتبط یا جراحیهای قبلی کنار گذاشته شدند. از میان ۸۶ مقاله بازیابی شده، پس از ارزیابی کیفیت با استفاده از پرسشنامه دان و بلک، در نهایت ۱۵ مطالعه با کیفیت بالا انتخاب شدند که بر نقش آنها در ارتقای سلامت و توان بخشی آسیبهای ورزشی تأکید داشت.

نتایج: این ۱۵ مطالعه نشان میدهند که ترکیب مهندسی بافت و تمرینهای ورزشی در درمان آسیبهای ورزشی بسیار مؤثر است. با کمک هوش مصنوعی برای طراحیهای بهینه، سلولهای بنیادی و داربستهایی مانند نانوالیاف، روند ترمیم بهویژه در ناحیهی لگن و عضلات را سرعت میبخشند. تمرینهایی مانند تایچی یا تمرینات عصبی-عضلانی نیز مؤثرند، بهویژه برای زنان و افراد جوان، اگرچه برخی ترکیبها مزیت خاصی اضافه نمی کنند. ترکیب PRP با سلولهای بنیادی در ترمیم غضروف بسیار کارآمد است و آیندهی درمانهای ترکیبی را نوید میدهد.

نتیجه گیری: تلفیق مهندسی بافت با تمرینهایی مانند تای چی، بازیابی آسیبها را دگرگون کرده و بافتها را برای فعالیت ورزشی مقاومتر میسازد. استفاده از تصویربرداریهای پیشرفته و ابزارهای پوشیدنی، درمانها را شخصی سازی می کند. با این حال، چالشهایی مانند پیچیدگی پروتکلها، هزینههای بالا، و تفاوتهای سنی یا جنسیتی نیازمند راهحلهایی با برنامههای استاندارد، مقرون به صرفه و تحقیقات مبتنی بر هوش مصنوعی هستند. ترکیب مهندسی بافت و ورزش، آیندهی درمان آسیبهای ورزشی را متحول می کند.

واژههای کلیدی

اصلاح نظام سلامت، ترمیم زخم، سلولهای بنیادی، سلولهای بنیادی مزانشیمی، مهندسی بافت