Electronic Training Instrument for Taekwondo Athletes

Document Type : Original research papers

Authors

Department of Electromechanical Engineering, Universidad de las Fuerzas Armadas ESPE, Ecuador

Abstract

This paper presents an electronic training instrument for taekwondo athletes. The proposed prototype was inspired by the electronic body protector (EBP) used in previous Olympic games. Besides counting points, our prototype measures the energy of each strike, providing information to coaches about every strike's force and location in real-time. The prototype consists of a transmitter module installed inside a chest protector, a receptor module, and a human-machine interface (HMI). The proposed prototype aims to provide coaches and athletes with a tool for monitoring and improving the taekwondo technique.

Keywords

Main Subjects


  1. Matsushigue KA, Hartmann K, Franchini E. Taekwondo: Physiological responses and match analysis. The Journal of Strength & Conditioning Research. 2009;23(4):1112-7.
  2. Pieter W, Heijmans J. Scientific Coaching for Olympic Taekwondo, Meyer & Meyer Sport. Oxford, UK; 2000.
  3. Serina E, Lieu D. Thoracic injury potential of basic competition taekwondo kicks. Journal of biomechanics. 1991;24(10):951-60.
  4. Zhang C, Liu S, Huang X, Guo W, Li Y, Wu H. A stretchable dual-mode sensor array for multifunctional robotic electronic skin. Nano Energy. 2019;62:164-70.
  5. He Z, Chen W, Liang B, Liu C, Yang L, Lu D, et al. Capacitive Pressure Sensor with High Sensitivity and Fast Response to Dynamic Interaction Based on Graphene and Porous Nylon Networks. ACS Applied Materials & Interfaces. 2018;10(15):12816-23.
  6. Boutry Clementine M, Negre M, Jorda M, Vardoulis O, Chortos A, Khatib O, et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Science Robotics. 2018;3(24):eaau6914.
  7. Lim H-R, Kim HS, Qazi R, Kwon Y-T, Jeong J-W, Yeo W-H. Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. Advanced Materials. 2020;32(15):1901924.
  8. Espinosa HG, Lee J, James DA. The inertial sensor: a base platform for wider adoption in sports science applications. Journal of Fitness Research. 2015;4(1):13-20
  9. Worsey MTO, Pahl R, Thiel DV, Milburn PD. A Comparison of Computational Methods to Determine Intrastroke Velocity in Swimming Using IMUs. IEEE Sensors Letters. 2018;2(1):1-4.
  10. Dunn M, Hart J, James D. Wearing Electronic Performance and Tracking System Devices in Association Football: Potential Injury Scenarios and Associated Impact Energies. Proceedings. 2018;2(6):232
  11. Song Y, Jeon Y, Park G, An H, Hwang T, Lee H, et al. Development of taekwondo trainer system for training on electronic protector with hitting target indicator. International Journal of Computer Science and Network Security. 2010;10(6):51-6.
  12. Krajewski A, Helmer R, Lucas S. Signal processing for valid score determination in amateur boxing. Procedia Engineering. 2011;13:481-6.
  13. Buśko K, Staniak Z, Szark-Eckardt M, Nikolaidis PT, Mazur-Różycka J, Łach P, et al. Measuring the force of punches and kicks among combat sport athletes using a modified punching bag with an embedded accelerometer.2016;18:1. [1509-409X [Print]].
  14. Bayraktar B, Kurtoğlu M. Sporda performans, etkili faktörler, değerlendirilmesi ve artırılması. Klinik Gelişim. 2009;22(1):16-24.
  15. Ball N, Nolan E, Wheeler K. Anthropometrical, physiological, and tracked power profiles of elite taekwondo athletes 9 weeks before the Olympic competition phase. The Journal of Strength & Conditioning Research. 2011;25(10):2752-63.
  16. Marković G, Mišigoj-Duraković M, Trninić S. Fitness profile of elite Croatian female taekwondo athletes. Collegium antropologicum. 2005;29(1):93-9.
  17. Lambert C, Beck BR, Weeks BK. Concurrent Validity and Reliability of a Linear Positional Transducer and an Accelerometer to Measure Punch Characteristics. The Journal of Strength & Conditioning Research. 2018;32(3):675-680.
  18. Soekarjo KM, Orth D, Warmerdam E, Van Der Kamp J, editors. Automatic classification of strike techniques using limb trajectory data. International Workshop on Machine Learning and Data Mining for Sports Analytics; 2018: Springer:131-141.
  19. Del Vecchio F, Franchini E, Del Vecchio A, Pieter W. Energy absorbed by electronic body protectors from kicks in a taekwondo competition. Biology of Sport. 2011;28(1):75.
  20. Tasika N. Reliability & linearity of an electronic body protector employed in taekwondo games: a preliminary study. Journal of Human Sport and Exercise. 2013;8(3):S622-S32.
  21. Leveaux R, editor Technology driving changes in competitor decision making and match management. Business Transformation through Innovation and Knowledge Management: An Academic Perspective-Proceedings of the 14th International Business Information Management Association Conference, IBIMA 2010:1.
  22. Rosas-Cervantes V, Achig E. Diseño e implementación de un prototipo peto electrónico para el monitoreo de golpes en competencia de taekwondo. 2011. Available online: https://repositorio.espe.edu.ec/bitstream/21000/4312/1/T-ESPEL-0818.pdf
  23. Tekscan Inc. FlexiForce, Standard Force & Load Sensors Model A201. Datasheet. Available online: https://www.tekscan.com/sites/default/files/resources/FLX-A201-A.pdf.
  24. Digi International. Digi XBee, Wireless connectivity module, Model PRO OEM RF 2.4 GHz. Available from: https://www.digi.com/resources/documentation/digidocs/pdfs/90000991.pdf.
  25. ATMEL. Low-power Atmel AVR 8-bit Microcontroller.